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ABSTRACT 10	  

Using a multivariate, “patterns-based”, red noise approach to 42 years of observed tropical SST, 11	  

thermocline depth, and zonal wind stress seasonal anomalies, it is shown that natural random 12	  

variations can account for the observed variability of Central Pacific (CP) and Eastern Pacific 13	  

(EP) ENSO events. The recent multidecadal increase in the number of CP events relative to EP 14	  

events, which has been hypothesized to be connected to anthropogenic change in the state of the 15	  

ocean, is also found to be consistent with multivariate red noise and hence with stationary 16	  

statistics. ENSO “flavors” are the consequence of differing combinations of two initially 17	  

orthogonal spatial patterns that are precursors to CP or EP events of both signs. These precursors 18	  

can be excited by random weather forcing and subsequently result in SST anomaly amplification 19	  

primarily through surface or thermocline feedbacks, respectively.  20	  

21	  
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1) Introduction 22	  

 El Niño-Southern oscillation (ENSO), the dominant tropical coupled atmosphere-ocean 23	  

phenomenon on interannual time scales, impacts the climate not only over the tropics but also 24	  

over the globe [e.g. Alexander et al., 2002]. Historically, El Niño has been defined as the 25	  

appearance of warm sea surface temperature (SST) anomalies in the eastern tropical Pacific 26	  

including the “Niño3” region (5°S-5°N and 150°W-90°W). However, some El Niño events, 27	  

particularly recently, have maximum SST anomalies located primarily in the central tropical 28	  

Pacific “Niño4” region (5°S-5°N and 160°E-150°W), with attendant shifts in both atmospheric 29	  

teleconnections and their worldwide impacts compared to the canonical ENSO [e.g. Ashok et al., 30	  

2007; Kim et al., 2009; Yeh et al., 2009; Di Lorenzo et al., 2010; Mo, 2010; Yu and Kim, 2011]. 31	  

 It has long been recognized that each El Niño event may have differences in detail from 32	  

the standard composite during the course of its evolution; this has sometimes been referred to as 33	  

different ENSO “flavors” and can be represented, for example, by secondary ENSO indices 34	  

representing east-west SST differences [e.g. Trenberth and Stepaniak, 2001]. This diverse El 35	  

Niño evolution received much attention recently after Yeh et al.’s [2009] analysis of El Niño in 36	  

the IPCC AR4 future climate projections suggested that increasing “CP-El Niño” occurrence 37	  

could be a response to ongoing greenhouse warming. In their nomenclature, an EP-El Niño (CP-38	  

El Niño) event occurs when the Niño3 (Niño4) SST anomaly is greater than 0.5oC and greater 39	  

than the Niño4 (Niño3) anomaly. Observational studies suggesting that CP-El Niño has 40	  

increasingly become the dominant form of El Niño since the late 1960s have also raised the 41	  

possibility that some natural and/or anthropogenic “base state” change (that is, a substantial 42	  

difference in the ocean mean state that alters stability properties) has changed characteristic El 43	  

Niño evolution [Yeh et al., 2009; Lee and McPhaden, 2010]. On the other hand, using the 4200 44	  



	  

	   3	  

year long Kiel Climate Model simulations, Yeh et al. [2011] showed that the frequency of CP-El 45	  

Niño occurrence can increase without any changes in radiative forcings, and acknowledged that 46	  

an increasing frequency of CP-El Niño occurrence may also be consistent with natural climate 47	  

variability. However, considering the deficient simulations of El Niño in coupled climate models 48	  

[Guilyardi et al., 2009; Newman et al., 2009; Yu and Kim, 2010], the latter conclusion may also 49	  

be highly model dependent (see Fig. 3 of Yeh et al. [2009]). 50	  

 The questions raised by these studies can be summarized as: 1) does the recent increase 51	  

in CP ENSOs reflect decadal base state change? and 2) does the recent increase in CP ENSOs 52	  

reflect anthropogenic change? To answer these questions, it is important to first construct a 53	  

suitable null hypothesis against which both observational and modeling studies may be tested: 54	  

observed changes in ENSO characteristics are consistent with natural seasonal variability with 55	  

stationary statistics. A standard null hypothesis in climate studies is to compare the variability of 56	  

a time series, either of an index or of a value at a fixed location, to scalar “red noise”. We 57	  

suggest that when testing changing relationships between multiple indices, or more generally the 58	  

variability of a series of evolving maps, the appropriate comparison is to multivariate red noise. 59	  

In this paper, using statistically stationary multivariate red noise determined from observed 60	  

tropical SST, thermocline depth, and zonal wind stress seasonal anomalies, we find the expected 61	  

multidecadal range in the relative frequency and amplitude of CP and EP ENSO events and 62	  

compare this range to what has so far been either observed or projected to occur. 63	  

2) “Patterns-based” multivariate red noise 64	  

 Climate variability is often characterized by a notable separation between the dominant 65	  

time scales of interacting processes. For example, compared to the much longer timescales of the 66	  

ocean, weather varies so rapidly that it can be considered to have almost no memory. Weather 67	  
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forcing of the oceanic mixed layer can then be approximated as white noise forcing of a damped 68	  

integrator [e.g., Hasselmann, 1976]. This is an example of univariate red noise (also called an 69	  

AR1 process) for an anomaly scalar time series x(t), the simplest null hypothesis for both 70	  

atmospheric and oceanic climate variability [e.g., Wunsch, 1999; Rudnick and Davis, 2003]. 71	  

 When extended to the more general case of an anomaly state vector x(t) representing 72	  

many evolving regional patterns of climate variables, this approximation based on time scale 73	  

separation becomes multivariate red noise, 74	  

1) 

 

dx

dt
= Lx + !  75	  

[e.g., Penland and Sardeshmukh, 1995], with two notable differences from univariate red noise. 76	  

First, L is a two-dimensional damped linear operator representing both local and non-local 77	  

dynamics, including interactions between variables, so multivariate red noise represents the 78	  

evolution of both stationary and propagating anomaly patterns (i.e., eigenmodes of L); scalar 79	  

indices derived from x can then have spectral peaks [e.g., Newman, 2007]. Second, some 80	  

characteristic physical processes operate mostly in one direction – for example, atmospheric 81	  

wind stress directly drives ocean circulation and thermocline changes but not vice versa [e.g., 82	  

Moore and Kleeman, 1999] – so L does not have symmetric dynamical relationships between all 83	  

elements of x. Consequently, despite the lack of exponential modal instability, some anomalies 84	  

experience significant but transient growth over finite time intervals (i.e., L is stable but non-self 85	  

adjoint; e.g., Farrell [1988]), since anomalies that are initially best configured to grow also 86	  

evolve into new patterns and/or move into new regions that lead to decay. These “optimal 87	  

structures” [e.g., Penland and Sardeshmukh, 1995] are initiated by some realizations of the 88	  

unpredictable white noise ξ , which has spatial but no temporal coherence. 89	  
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 The empirical method that determines multivariate red noise from observations is Linear 90	  

Inverse Modeling [LIM; Penland and Sardeshmukh, 1995]. In this paper, we use the LIM 91	  

developed by Newman et al. [2011; hereafter NAS], in which x consists of 3-month running 92	  

mean anomalies of observed SST [Rayner et al., 2003], thermocline depth (depth of 20ºC 93	  

isotherm) [Carton and Giese, 2008], and surface zonal wind stress [Kalnay et al., 1996] in the 94	  

Tropics (30ºS-30ºN) during 1959-2000. We integrated (1) forwards for 24000 yrs, treating it as a 95	  

stochastically-forced dynamical model following NAS. Repeating our study using detrended data 96	  

yielded negligible differences in all results reported below. 97	  

3) Distinguishing CP and EP events within multivariate red noise 98	  

 NAS verified multivariate red noise with tests ensuring that when (1) is determined from 99	  

a specified lag (here, 3 months) it accurately reproduces observed evolution statistics at much 100	  

longer time scales. Here we verify that CP and EP ENSO variations are reproduced by 101	  

multivariate red noise. First, Niño3 and Niño4 power spectra determined by (1) are compared to 102	  

the observed spectra in Figure 1. The multivariate red noise and observed spectra closely match, 103	  

with a strongly significant peak in the 2-7 year band and small deviations that are not statistically 104	  

significant. In contrast, the spectra of virtually all ensemble members of the “20th-century” 105	  

(20c3m) IPCC AR4 coupled GCMs lie substantially outside the 95% confidence interval [see 106	  

Newman et al., 2009]. Additionally, Fig. 1c shows that the simultaneous and lagged correlation 107	  

between Niño3 and Niño4, r(Niño3, Niño4), determined from (1) compares quite well with the 108	  

observed r(Niño3, Niño4). Note that if Niño3 and Niño4 were instead each independently fitted 109	  

with univariate red noises, their expected correlation would be zero. 110	  

 Second, in Figure 2 we show the two optimal structures leading to SST amplification 111	  

over an interval of six months. (This interval is chosen as a compromise between 9 months, the 112	  
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time of peak growth for the leading optimal, and 4 months, the peak for the second optimal.) The 113	  

leading optimal structure (Fig. 2a) leads to the maximum possible amplification of rms SST 114	  

anomaly within the entire tropical domain, and the second optimal structure (Fig. 2b) is 115	  

orthogonal to the leading one at both t = 0 and t = 6 months. The evolution of both is shown in 116	  

the Hovmollers at the bottom of each column. The leading optimal structure evolves into an “EP-117	  

ENSO” event. It is quite similar to the optimal structure for growth over nine months discussed 118	  

by NAS, who also used a diagnosis of the feedbacks within L to show how this structure’s 119	  

observed evolution is driven by both surface and thermocline interactions [see also Neelin et al., 120	  

1998], with the zonally averaged thermocline anomaly decreasing to zero as the amplitude of the 121	  

SST anomaly maximizes, and subsequent decay and sign change as in the classic “recharge-122	  

discharge” mechanism [Jin, 1997]. In contrast, the second optimal structure (which has not been 123	  

studied before) evolves into a “CP-ENSO” event with L initially driving growth through “non-124	  

local” interactions within SST (e.g., advection of SST anomalies; see Fig. 4b of NAS). In 125	  

particular, the initial equatorial heat content anomaly is near zero and there is no recharge-126	  

discharge mechanism, also suggested by some other studies of warm CP events [Kao and Yu, 127	  

2009; Kug et al., 2009]. Thus, although the SST anomaly grows fairly weakly, the lack of the  128	  

discharge mechanism also slows its decay, allowing the anomaly to persist relatively longer than 129	  

does the EP ENSO. This evolution of the CP optimal is consistent with NAS who suggested that 130	  

without thermocline-surface interactions, overall SST variability would be weaker but also more 131	  

persistent, and shifted west towards the central Pacific. In its second year the CP optimal 132	  

evolution weakens slightly but then strengthens to the east, behavior characteristic of the multi-133	  

year CP events, as the thermocline anomaly evolves so that its feedback on SSTs becomes more 134	  

important, especially further east. 135	  
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 The projection of observed anomalies on the initial optimal structures is compared to the 136	  

projection of observed SST anomalies upon the corresponding predicted evolved structures 6 137	  

months later in Figure 3. The high linear correlation of these projections for each initial/evolved 138	  

pair indicates that this potential optimal SST growth does occur as expected from multivariate 139	  

red noise; that is, the case-to-case evolution of anomalies is well captured by (1), with the slopes 140	  

of the least square lines matching the expected amplification factors, plus some remaining scatter 141	  

due to noise. In contrast to earlier studies suggesting that CP events are warm phase only [e.g. 142	  

Kug et al., 2009], Fig. 3b shows that CP-ENSO events of both signs occur [as in Yu and Kim, 143	  

2011], which is also seen in separate positive and negative composites constructed from SST 144	  

anomalies six months following all dates on which either the EP-ENSO or CP-ENSO optimal 145	  

structure amplitudes exceeded 1 standard deviation (blue dots in Figs. 3a and b). The EP [CP] 146	  

composite in Figs. 3c and e [Figs. 3d and f] is consistent with the expected six-month evolution 147	  

of the leading [second] optimal pattern. Anomalies with initially high projection on both optimal 148	  

patterns (indicated by green dots) evolve in a correspondingly mixed manner (not shown). 149	  

Moreover, no trend exists in the time series of either the CP optimal or evolved pattern; the EP 150	  

optimal and evolved pattern time series have weak trends that are not significant. 151	  

4) Variations of EP and CP events driven by noise 152	  

 Given that multivariate red noise matches the observed interannual variability of both EP 153	  

and CP events in the Tropics, we can now assess the potential range of EP and CP variability 154	  

over multidecadal epochs, assuming no underlying change in either the dynamics or the overall 155	  

statistics of noise. Using the DJF mean each year of the 24000-year integration we computed the 156	  

same statistical measures as Yeh et al. [2009]: the simultaneous value of r(Niño3, Niño4), and 157	  

the occurrence ratio of CP/EP El Niño (i.e., warm event only) defined as the ratio of CP-El Niño 158	  
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to EP-El Niño events, using Yeh et al’s classifications noted in section 1. Results for the full 159	  

integration are shown in Figure 4a, where both measures are determined from 30-yr long 160	  

intervals centered 10 years apart. Ranges of values for the integration are summarized in Table 1 161	  

by determining 95% confidence bounds from the large number of samples, with sensitivity to the 162	  

interval size determined by recomputing both measures using non-overlapping (i.e., adjacent) 10, 163	  

30, 50, or 100-yr intervals. As expected, shorter intervals show much greater variations in EP 164	  

and CP events. In fact, it is possible to go up to 28 years between EP-El Niño events, and about 165	  

one in seven 30-yr intervals have no CP-El Niño events. But even over centennial time scales 166	  

long-term trends in ENSO characteristics are possible simply due to variations in noise. 167	  

Moreover, any change in long-term mean now is a residual of the variability, not a driver of it; 168	  

for example, for 30-yr means a two standard deviation decrease of EP events results in a 169	  

deepening of the equatorial thermocline of ~6 m in the central Pacific. These results suggest that 170	  

even several decades of data may be insufficient to gain an adequate picture of potential 171	  

externally forced trends in CP/EP variability.  172	  

 For comparison, the same measures determined from three different SST datasets for the 173	  

years 1891-2010 are shown in Fig. 4c, where again (now due to limited data) the 30-yr intervals 174	  

have 10-yr overlaps. [Note that for both NOAA datasets, there are no CP events prior to the 175	  

1941-1970 interval.] Clearly, the potential range in both measures is larger than appears in the 176	  

SST datasets, even when we repeat these calculations using nonoverlapping 10-yr time intervals 177	  

(not shown). Of course, the frequency of CP-El Niño occurrence before 1960 is more uncertain 178	  

due to the lack of long-term SST observations, especially over the central and eastern tropical 179	  

Pacific Ocean [Deser et al., 2010; Giese et al., 2010], but additional earlier CP events would 180	  

only decrease the displayed 20th century range. Moreover, a number of 120-yr long periods in the 181	  



	  

	   9	  

integration mimic the observational record. For example, we define “increasing CP/EP cases” in 182	  

the integration as two adjacent 60-year segments for which the CP/EP ratio rises from below 183	  

normal to above normal, and simultaneously r(Niño3, Niño4) decreases, from the first 60-yr 184	  

segment to the second. Figure 4b shows that both measures averaged over only these 120-yr 185	  

periods correspond quite well to Fig. 4c. 186	  

5) Concluding remarks 187	  

 Since multivariate red noise determined from observations provides an excellent baseline 188	  

for the statistics of observed tropical seasonal anomaly evolution, and particularly differentiates 189	  

between CP and EP ENSO events, it serves as a useful null hypothesis against which possible 190	  

changes in the nature of ENSO can be tested. In this case, all past variations in CP and EP ENSO 191	  

events, at least as determined from current SST gridded datasets, as well as projected changes 192	  

based on the SRES A1B scenario in the IPCC AR4 models [Yeh et al., 2009; cf. their Fig. 3 to 193	  

our Fig. 4], appear to be less than may be expected from natural random variability. Note that 194	  

these results assume statistical stationarity; that is, large multidecadal changes in relative CP and 195	  

EP ENSO occurrence are consistent with fixed statistics of the 1959-2000 period, with no “base 196	  

state” change. Also, there was no trend mode (either temporal or spatial) within the CP optimal 197	  

pattern. Obviously, some variation in these results is likely since L is only an approximation of 198	  

the underlying L that would be determined from a longer period of data. The key point is that we 199	  

are restricted not by an accounting of CP and EP events that have occurred in the past forty years 200	  

but rather by the average simultaneous and 3-month lagged relationships between the variables 201	  

and locations represented in our chosen state vector, which allow for the possibility of EP and 202	  

CP events that are initiated and evolve in a manner consistent with these statistics but have not 203	  

(yet) occurred. 204	  



	  

	   10	  

  While CP and EP ENSOs may be randomly initiated, this study does suggest that their 205	  

observed differences represent real dynamical differences in which the dominant physical 206	  

processes depend on initial conditions, leading to CP ENSOs that may amplify less but also 207	  

persist more than EP ENSOs. Of course, generally climate anomalies will not exactly project on 208	  

either of the two optimal structures shown in Fig. 2. Rather, since these structures are orthogonal, 209	  

an anomaly that is some combination of these two would evolve as a linear combination (plus 210	  

additional noise subsequent to the initial time). Consequently, many additional “flavors” of 211	  

ENSO are possible; for example, adding equal amounts of the two initial patterns would lead to a 212	  

sub-optimal but more persistent ENSO. Given the strong relationships between initial and 213	  

evolved patterns in Fig. 3, these ENSO flavors and their global impacts should be predictable. 214	  

 It remains possible that anthropogenic forcing might drive a change in the dynamics and 215	  

hence a change in ENSO as suggested by Yeh et al. (2009), but that this change is too small to be 216	  

significant in the face of short data sets and far smaller model ensembles than are needed to 217	  

discern it from natural variability [e.g., Coelho and Goddard, 2009; Solomon and Newman, 218	  

2011; Deser et al., 2011]. Or anthropogenic effects might drive changes in dominant noise 219	  

spatial structures rather than in the base state dynamics, which could still change ENSO 220	  

characteristics. It may be some years, however, before we can determine from data if this is 221	  

likely. 222	  
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 297	  

Averaging 
interval 
(yrs) 

r(Niño3,Niño4) Change in 
r(Niño3,Niño4), 
consecutive 
intervals 

CP/EP ratio Change in 
CP/EP ratio, 
consecutive 
intervals 

% of 
intervals 
without CP 
events 

10 0.42 – 0.96 0.44 0 – ∞ ∞ 50 
30 0.63 – 0.91 0.20 0 – 1.2 0.96 14 
30 (10-yr 
overlap) 

0.63 – 0.91 0.13 0 – 1.2 0.55 14 

50 0.67 – 0.88 0.15 0 – 0.88 0.64 3.4 
100 0.71 – 0.86 0.11 0.1 – 0.62 0.44 0.3 

 298	  

Table	  1.	  First	  four	  columns:	  95%	  confidence	  intervals	  determined	  from	  computing	  r	  and	  CP/EP,	  using	  different	  299	  
interval	  sizes,	  from	  a	  24000	  yr	  forward	  integration	  of	  (2).	  Last	  column:	  the	  total	  fraction	  of	  intervals	  that	  300	  
had	  no	  CP	  events. 301	  

302	  
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	  303	  

	  304	  

Figure	   1.	   Power	   spectra	   for	   the	   (a)	   Niño	   3	   and	   (b)	   Niño4	   SST	   indices	   for	   the	   years	   1959-‐2000	   (red	   lines),	  305	  
compared	  to	  those	  predicted	  by	  multivariate	  red	  noise	  (i.e.,	  the	  LIM;	  blue	  lines)	  and	  by	  a	  univariate	  red	  306	  
noise	   fit	   (green	   lines).	   Gray	   shading	   represents	   the	   95%	   confidence	   interval	   determined	   from	   a	   500-‐307	  
member	   ensemble	   of	   42	   yr-‐long	   LIM	   forward	   integrations	   (see	   NAS	   for	   further	   details).	   In	   these	  308	  
log(frequency)	  versus	  power	  times	  angular	  frequency	  (ω)	  plots,	  the	  area	  under	  any	  portion	  of	  the	  curve	  309	  
is	  equal	  to	  the	  variance	  within	  that	  frequency	  band.	  Note	  that	  displaying	  power	  times	  frequency	  slightly	  310	  
shifts	   the	  power	  spectral	  density	  peak	  centered	  at	  a	  period	  of	  4.5	  yrs	  to	  a	  variance	  peak	  centered	  at	  a	  311	  
period	  of	  3.5	  yrs.	  (c)	  Correlation	  between	  Niño	  3	  and	  Niño	  4	  indices,	   for	  lags	  ranging	  up	  to	  25	  months.	  312	  
Positive	  lags	  indicate	  Niño	  3	  leads	  Niño	  4;	  negative	  lags	  indicate	  Niño	  4	  leads	  Niño	  3.	  313	  

	  314	  
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Figure	   2:	   Leading	   patterns	   for	   SST	   anomaly	   amplification	   over	   a	   six-‐month	   interval	   (i.e.,	   optimal	   structures),	  316	  
determined	  from	  a	  singular	  vector	  decomposition	  of	  the	  system	  propagator	  exp(6L)	  under	  the	  L2	  norm	  317	  
(i.e.,	  domain-‐mean	  square	  amplitude)	  of	  anomalous	  SST.	  a)	  Evolution	  of	  the	  first	  pattern	  (which	  leads	  to	  318	  
an	   EP-‐type	   ENSO),	   shown	   as	  maps	   at	   (top)	   t	   =	   0	   and	   (middle)	   t	   =	   6	  months,	   and	   (bottom)	   as	   a	   time-‐319	  
longitude	   cross-‐section	   of	   the	   evolution	   along	   the	   equator.	   b)	   Same	   as	   (a)	   except	   the	   evolution	   of	   the	  320	  
second	   pattern	   (which	   leads	   to	   a	   CP-‐type	   ENSO).	   Anomalous	   SST	   is	   indicated	   by	   shading	   (contour	  321	  
interval	   0.25	   K),	   thermocline	   depth	   by	   contours	   (contour	   interval	   5	  m,	   where	   black	   is	   positive),	   and	  322	  
zonal	  wind	  stress	  by	  black	  vectors	   (scaled	  by	   the	  reference	  vector	  0.02	  Nm-‐2,	  with	  values	  below	  0.002	  323	  
Nm-‐2	  removed	  for	  clarity).	  Note	  that	  the	  opposite-‐signed	  patterns	  lead	  to	  cold	  events.	  324	  

325	  
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	  326	  

Figure	  3.	  Top	  panels:	  Projection	  of	  observations	  upon	  the	  optimal	  initial	  condition	  for	  SST	  anomaly	  amplification	  327	  
over	  a	  six-‐month	  interval,	  versus	  the	  projection	  on	  the	  optimal	  evolved	  SST	  state	  6	  months	  later,	  for	  (a)	  328	  
the	   EP	   pattern	   and	   (b)	   the	   CP	   pattern.	   Note	   that	   the	   tropical	   SST	   growth	   factor	   for	   the	   EP	   pattern	   is	  329	  
almost	  4	  times	  greater	  than	  for	  the	  CP	  pattern.	  Blue	  dots	  indicate	  initial	  anomalies	  with	  large	  projection	  330	  
(magnitude	   greater	   than	   1	   standard	   deviation)	   on	   either	   the	   EP-‐ENSO	   or	   CP-‐ENSO	   optimal	   structure	  331	  
amplitudes,	  but	  not	  both;	  green	  dots	   indicate	   initial	  anomalies	  with	   large	  projection	   (over	  1	   standard	  332	  
deviation)	   on	   both	   optimal	   structures.	   Bottom	   panels:	   HadISST	   (Rayner	   et	   al.	   [2003])	   SST	   composite	  333	  
anomalies	   constructed	   six	   months	   following	   the	   dates	   represented	   by	   the	   blue	   dots.	   Composites	   are	  334	  
constructed	   separately	   for	   (c	   and	   d)	   positive	   (warm	   phase)	   and	   (e	   and	   f)	   negative	   (cold	   phase)	  335	  
projection	  values.	  Anomalies	  with	  initially	  high	  projection	  on	  both	  optimal	  patterns	  (i.e.,	  green	  dots)	  are	  336	  
excluded	  from	  the	  composites.	  337	  

338	  
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	  339	  

	  340	  

Figure	  4.	  Measures	  of	  ENSO	  variations	  from	  multivariate	  red	  noise	  compared	  to	  observations.	  (top)	  CP/EP	  El	  Niño	  341	  
(i.e.,	  warm	  event	  only)	  occurrence	  ratio	  and	  (bottom)	  r	  (Niño3,	  Niño4),	  for	  (a)	  the	  24000	  yr	  integration,	  342	  
(b)	  a	  composite	  over	  all	  the	  “increasing	  CP/EP	  cases”	  from	  the	  integration,	  with	  ± 	  one	  standard	  deviation	  343	  
indicated	  by	  orange	  bars/shading,	  and	  (c)	  the	  SST	  datasets	  HadISST	  (red;	  Rayner	  et	  al.	  [2003]),	  NOAA	  v2	  344	  
(green;	  Smith	  and	  Reynolds	  [2004]),	  and	  NOAA	  v3	  (blue;	  Smith	  et	  al.	  [2008])	  for	  the	  years	  1891-‐2010.	  In	  345	  
all	   cases	   the	  quantities	   are	   computed	  over	  30-‐yr	   long	   intervals	   centered	  10	  years	   apart.	   Years	  on	   the	  346	  
abscissa represent	   the	   center	   of	   the	   30-‐yr	   interval.	   The	   “increasing	   CP/EP	   cases,”	   indicated	   by	   dots	  347	  
between	  top	  and	  bottom	  panels	  in	  (a),	  are	  two	  adjacent	  60-‐year	  segments	  for	  which	  the	  CP/EP	  ratio	  rises	  348	  
from	  below	  normal	  to	  above	  normal,	  and	  simultaneously	  r(Niño3,	  Niño4)	  decreases,	  from	  the	  first	  60-‐yr	  349	  
segment	  to	  the	  second.	  350	  
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